
Ding Zhao

Assistant Professor

Carnegie Mellon University

202 @ Ding Zhao

Trustworthy AI Autonomy

M5-1 Trustworthy RL-Generalization

Ding Zhao | CMU

Plan for today
• Working on real robots

• Setting of robots, human supervision etc

• Continuous state actions (DDPG/SAC)

• Delay-aware RL

• Non-stationary context-aware Rl

• Generalization and meta learning

2

Ding Zhao | CMU

Working with real robots
• Experiment design

• Facilitating continuous operation

Round-the-clock operation

3Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, Sergey Levine, Sergay, “How to Train Your Robot with Deep Reinforcement
Learning – Lessons We’ve Learned,” Journal of Robotics Research (IJRR), 2021

Ding Zhao | CMU

Working with real robots
• Experiment design

• Facilitating continuous operation
Round-the-clock operation

• Non-stationarity due to environment
changes

4 Levine, Sergey, et al. "Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection." The International
Journal of Robotics Research 37.4-5 (2018): 421-436.

• a consistent performance drop of
5% in as little as 800 grasps
executed on a single robot.

Ding Zhao | CMU

Working with real robots
• Experiment design

• Facilitating continuous operation
Round-the-clock operation

• Non-stationarity due to environment
changes

• The human can reset the scene, stop
the robot in unsafe situations, and
simply restart and reset the robot on
failures.

5https://www.youtube.com/watch?v=FmMPHL3TcrE&t=85s

https://www.youtube.com/watch?v=FmMPHL3TcrE

Ding Zhao | CMU

Safe Reinforcement Learning via Human Intervention
• Trial without Error

• May not be scalable for
real world implementation

• However, people still do
it e.g. self-driving
companies

6Saunders, William, et al. "Trial without error: Towards safe reinforcement learning via human intervention." arXiv preprint arXiv:1707.05173 (2017).

https://www.youtube.com/watch?v=qhUvQiKec2U

Ding Zhao | CMU

Recap: two ways to compute the optimal policy
• Parameterize the policy

• Gradient ascent

•

•

• ,

•

• Parameterize the value function

• Dynamic programming

•

•

• ,

• With the“greedy method”, i.e.,  
 of then can influence .

• , ,

J(θ, 𝒟πθ
) = 𝔼 [∑∞

t=0 γtrt |πθ]
θ* = arg maxθ J(θ, 𝒟πθ

)

θi+1 = θi + α∇θJ(θ) |θ=θi
θi → θ*

at ∼ πθi
(⋅ |st)

Q

Qπ*
ϕ*(st, at) = 𝔼[r(st, at) + γ maxat+1

Qπ*
ϕ*(st+1, at+1)]

eπ
ϕ = Qπ

ϕ(st, at) − 𝔼[r(st, at) + γ maxat+1
Qπ

ϕ(st+1, at+1)]

L(ϕ, π) = 𝔼 [1
2 eπ

ϕ
2] (ϕ*, π*) = arg minϕ,π L(ϕ, π)

π(at |st) = maxa Qϕ(st, a)
ϕ Q π

ϕi+1 = ϕi − α∇ϕL(ϕ) |ϕ=ϕi
ϕi → ϕ* πi → π*

7

Ding Zhao | CMU

Handle continuous action space
• Issue of DQN: With continuous action space, we need to solve every timestep

in Q-learning.

• When there are a finite number of discrete actions, the max poses no problem, because we can just

compute the Q-values for each action separately and directly compare them. (This also immediately
gives us the action which maximizes the Q-value.)

• But when the action space is continuous, we can’t exhaustively evaluate the space, and solving the
optimization problem is highly non-trivial. Using a normal optimization algorithm would make
calculating a painfully expensive subroutine. And since it would need to be run every
time the agent wants to take an action in the environment, this is unacceptable.

• DDPG does not have this problem as it directly approximate with . No
optimization is needed.

at = arg maxa Q(st, a)

maxa Q*(s, a)

arg maxa Q*(s, a) μθ(s)

8https://spinningup.openai.com/en/latest/algorithms/ddpg.html

https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Ding Zhao | CMU

Recap: DQN-3.0 algorithm
Randomize actions and training data

1. Take the -greedy method:  

 with probability , otherwise, choose
a random action 
observe a dataset and add it to

1. Randomly sample a mini batch from

2. Calculate Bellman backup for this batch 

1. Update the Q function 
 

3. Update Q function:  
Moving average: , e.g.  

ε
at = maxa Qϕi

(st, a) 1 − ε

{(st, at, st+1, rt)} 𝒟

𝒟

yt = r(st, at) + γ maxat+1
Qϕi

(st+1, at+1)

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at))(Qϕ(st, at) − yt)

ϕi+1 = ρϕi + (1 − ρ)ϕ ρ = 0.999
9

The only changes DDPG made

1. Use a deterministic policy to calculate
arg max:  
Q function:

2.

 

at = μθ(st) = arg maxa Q(st, a)

max
at+1

Qϕi
(st+1, at+1) → Qϕi

(st+1, μθ(s))

θi+1 = θi + ∇θJ(θ) |θ=θi

∇θJ(θ) = ∇θQ(st, at) = ∇θQ(st, μθ(st))
= 𝔼st∼𝒟[∇θ μθ(at |st)∇aQμ(st, a) |a=μθ(st)

]

randomize data:
experience replay

Also called low pass filter/Polyak averaging in literature

Ding Zhao | CMU

DDPG algorithms
Randomize actions and training data

1. Take the  

observe a dataset and add it to

1. Randomly sample a mini batch from

2. Calculate Bellman backup for this batch 

1. Update the Q function 

2. Update the policy 

3. Update Q function and policy 
, , 

a(st) = μθ(st)
{(st, at, st+1, ri)} 𝒟

𝒟

yt = r(st, at) + γQϕi
(st+1, μθ(st))

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at))(Qϕ(st, at) − yt)

θ ← θ + β∑t [∇θ μθ(a |st)∇aQμ
ϕ(st, a) |a=μθ(s)]

ϕi+1 = ρϕi + (1 − ρ)ϕ θi+1 = ρθi + (1 − ρ)θ
10

Two tricks to enhance performance

1. Increase stability: use a larger delay to
stabilize the learning of Q function

• use instead of to compute ϕi−k ϕi yt

Also called low pass filter/Polyak averaging in literature

Ding Zhao | CMU

DDPG algorithms
Randomize actions and training data

1. Take the  

observe a dataset and add it to

1. Randomly sample a mini batch from

2. Calculate Bellman backup for this batch 

1. Update the Q function 

2. Update the policy 

3. Update Q function and policy 
, , 

a(st) = μθ(st)
{(st, at, st+1, ri)} 𝒟

𝒟

yt = r(st, at) + γQϕi
(st+1, μθ(st))

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at))(Qϕ(st, at) − yt)

θ ← θ + β∑t [∇θ μθ(a |st)∇aQμ
ϕ(st, a) |a=μθ(s)]

ϕi+1 = ρϕi + (1 − ρ)ϕ θi+1 = ρθi + (1 − ρ)θ
11Also called low pass filter/Polyak averaging in literature

Two tricks to enhance performance

1. Increase stability: use a larger delay to
stabilize the learning of Q function

• use instead of to compute

2. Use add a Gaussian noise to the
deterministic policy to make the data
more i.i.d and covers more scenarios

•

• Two approaches: TD3 and SAC

ϕi−k ϕi yt

a(st) = μθ(st) + 𝒩(0,σ2)

Ding Zhao | CMU

Improve the DDPG with TD3
• Overestimation problem

• While DDPG can achieve great performance sometimes, it is frequently brittle with respect to
hyperparameters and other kinds of tuning. A common failure mode for DDPG is that the learned Q-
function begins to dramatically overestimate Q-values (spikes), which then leads to the policy
breaking. Twin Delayed DDPG (TD3) is an algorithm that addresses this issue by introducing three
critical tricks:

1. Clipped Double-Q Learning. TD3 learns two Q-functions instead of one (hence “twin”), and uses the
smaller of the two Q-values to form the Bellman error loss functions. Particularly,

.

2. “Delayed” Policy Updates.: use instead of to compute . Usually or 2.

3. Target Policy Smoothing: Use add a Gaussian noise to the deterministic policy

, . Usually add clips to make the action range feasible. Or

normalize it with

ϕ(i) ← ϕ(i) − α∑t (∇ϕ(i)Qϕ(i)(st, at))(Qϕ(i)(st, at) − yt), i = {1,2} yt = r(st, at) + γ mini Qϕ(i)(st+1, μθ(st))

ϕi−k ϕi yt k = 1

a(st) = μθ(st) + σθ(st) ⊙ ξ ξ ∼ 𝒩(0,I)
at = tanh (μθ(st) + σθ(st) ⊙ ξ)

12

Ding Zhao | CMU

SAC
• Idea 2: Increase the entropy of the policy distribution to encourage exploration

• Use a stochastic policy: , .

• Entropy:

• Entropy is a quantity which, roughly speaking, says how random a random variable

is. If a coin is weighted so that it almost always comes up heads, it has low entropy;
if it’s evenly weighted and has a half chance of either outcome, it has high entropy.

• Reward:

• This has a close connection to exploration-exploitation trade-off: increasing entropy

results in more exploration, which can accelerate learning later on.

• The Bellman Equation becomes

•

• The remaining is similar to TD3.

π(at ∣ st)
at ∼ πθ(at |st) = tanh(μθ(st) + σθ(st) ⊙ ξ) ξ ∼ 𝒩(0,I)

H(πθ) = 𝔼πθ
[−log πθ(at |st)]

r(st, at) ⇒ r(st, at) + αH(π(at ∣ st))

Qπ(st, at) = 𝔼π [∑t′￼≥t γt′￼−trt′￼
+ α∑t′￼≥t+1 γt′￼−tH(π(at′￼

|st′￼
)) |st, at] = 𝔼π [rt + γ(Qπ(st+1, at+1) + αH(π(at′￼

))]

13

Ding Zhao | CMU

SAC algorithms
Randomize actions and training data

1. Take the  

observe a dataset and add it to

1. Randomly sample a mini batch from

2. Calculate Bellman backup for this batch 

1. Iteratively calculate from  

2. Iteratively calculate from  

3. Update Q function and policy 
, , 

at = tanh (μθ(st) + σθ(st) ⊙ ξ), ξ ∼ 𝒩(0,I)
{(st, at, st+1, ri)} 𝒟

𝒟

yt = r(st, at) + γ(mini=1,2 Qϕ(i)(st+1, at+1) + αH(π(at ∣ st))), at+1 ∼ πθ(⋅ |st)

ϕ ϕi
ϕ(i) ← ϕ(i) − α∑t (∇ϕ(i)Qϕ(i)(st, at))(Qϕ(i)(st, at) − yt), i = {1,2}

θ θi
θ ← θ + β∇θ ∑t [(mini=1,2 Qϕ(i)(st, πθ(at |st)) + αH(π(at ∣ st))]

ϕi+1 = ρϕi + (1 − ρ)ϕ θi+1 = ρθi + (1 − ρ)θ
14Also called low pass filter/Polyak averaging in literature

Ding Zhao | CMU

Recap: popular RL algorithms

15https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Ding Zhao | CMU 16
https://www.datamachinist.com/reinforcement-learning/part-2-reinforcement-learning-algorithms/

Ding Zhao | CMU

Domain randomization
• Sim-to-real: Dactyl was

trained entirely in
simulation and transfers
its knowledge to reality

17https://openai.com/blog/learning-dexterity/

Ding Zhao | CMU 18https://openai.com/blog/learning-dexterity/

Ding Zhao | CMU 19https://openai.com/blog/learning-dexterity/

Ding Zhao | CMU 20https://openai.com/blog/learning-dexterity/

Ding Zhao | CMU

Delay matters in real-world applications

21

Action
selection

Actuator’s
response

(,) mismatch

Total delay time: n

Delays are prevalent in the real world.

E.g., control freq of autonomous vehicles > 10 Hz,

While the hydraulic brake system delay > 0.4 seconds.

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

Ding Zhao | CMU

Control of the delayed system
• Delays may not only degrade the performance of the agent but also induce

instability to the dynamic systems. (Gu & Niculescu, 2003)

• The control community has proposed several methods to deal with delayed

tasks. The most general approach is the Smith predictor (Astrom et al., 1994):

	 Basic idea: feedback control by predicting the future states.

	 Cons: requires a system model and is sensitive to model errors.

22Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

Delayed Markov Decision Process (DMDP)

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

Experiment #1: the influence of delay

● SAC (n=0): soft actor-critic, SOTA model-
free algorithm

● PETS (n=0): The original PETS algorithm
in undelayed environment.

● PETS (n=1): The original PETS algorithm
in the 1-step delayed environment but
ignoring the action delay.

● W-DATS (n=1): PETS algorithm in the
delayed environment that wastefully
learns the whole dynamics of DMDPs.

● DATS (n=1): the proposed method
introduced in Algorithm. 2.

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

Experiment #2:
model-based vs
model-free

DATS: the proposed
model-based method.

RTAC: model-free method, the updated
SAC. (Ramstedt & Pal, 2019)

● DATS has stable performance
when the delay step increases.

● RTAC degrades significantly as the
delay step increases.

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

Ding Zhao | CMU

Robust Adversarial Reinforcement Learning (RARL)
• Main agent: protagonist

• Environment agent: adversary

• Consider env as the adversary

Key idea:

• Adversarial training as a two-player zero-sum game

• The protagonist maximizes

• The adversary minimizes

• Use gradient-descent-ascent-based algorithm to
train the protagonist and adversary

<latexit sha1_base64="lDLU/CM91/GapEbzLuGJDYf7CUY=">AAACK3icbVBNaxsxENXmo3XdpHGSYy8ippBAMLshtD2ahkBPwS21HVgti1aetYW1H0izLc7WPyX3XPpXckgOSUoPvfR/VGv7kK8HYh7vzTCaF+VKGnTdO2dpeWX1xcvaq/rrtfU3G43NrZ7JCi2gKzKV6dOIG1AyhS5KVHCaa+BJpKAfjY8qv/8dtJFZ+g0nOQQJH6YyloKjlcLGJ5ZwHEVReTwNS4a8oMzIhDIcAfJ9ynIjp0xBjP7XWdmtepiWwxHuzUsQNppuy52BPiXegjTb3g919vP8bydsXLFBJooEUhSKG+N7bo5ByTVKoWBaZ4WBnIsxH4JvacoTMEE5u3VK31llQONM25cinan3J0qeGDNJIttZXWYee5X4nOcXGH8MSpnmBUIq5oviQlHMaBUcHUgNAtXEEi60tH+lYsQ1F2jjrdsQvMcnPyW9g5b3vnX4xWu2T8gcNfKW7JBd4pEPpE0+kw7pEkEuyCW5IbfOL+fa+e38mbcuOYuZbfIAzr//zdqsag==</latexit>

E⌧⇠✓, [R (⌧)]
<latexit sha1_base64="lDLU/CM91/GapEbzLuGJDYf7CUY=">AAACK3icbVBNaxsxENXmo3XdpHGSYy8ippBAMLshtD2ahkBPwS21HVgti1aetYW1H0izLc7WPyX3XPpXckgOSUoPvfR/VGv7kK8HYh7vzTCaF+VKGnTdO2dpeWX1xcvaq/rrtfU3G43NrZ7JCi2gKzKV6dOIG1AyhS5KVHCaa+BJpKAfjY8qv/8dtJFZ+g0nOQQJH6YyloKjlcLGJ5ZwHEVReTwNS4a8oMzIhDIcAfJ9ynIjp0xBjP7XWdmtepiWwxHuzUsQNppuy52BPiXegjTb3g919vP8bydsXLFBJooEUhSKG+N7bo5ByTVKoWBaZ4WBnIsxH4JvacoTMEE5u3VK31llQONM25cinan3J0qeGDNJIttZXWYee5X4nOcXGH8MSpnmBUIq5oviQlHMaBUcHUgNAtXEEi60tH+lYsQ1F2jjrdsQvMcnPyW9g5b3vnX4xWu2T8gcNfKW7JBd4pEPpE0+kw7pEkEuyCW5IbfOL+fa+e38mbcuOYuZbfIAzr//zdqsag==</latexit>

E⌧⇠✓, [R (⌧)]

26

<latexit sha1_base64="8tCX7MaB7bkWT/w0N7eJzktwFIA=">AAAB7XicbZBNSwMxEIaz9avWr6pHL4tF8FR2VdSbBS+epIL9gHYp2XTaxmaTJZkVytL/4MWDIl79P3ry35hue9DWFwIP7ztDZiaMBTfoed9Obml5ZXUtv17Y2Nza3inu7tWNSjSDGlNC6WZIDQguoYYcBTRjDTQKBTTC4fUkbzyCNlzJexzFEES0L3mPM4rWqrdxAEg7xZJX9jK5i+DPoHT1dZqp2il+truKJRFIZIIa0/K9GIOUauRMwLjQTgzElA1pH1oWJY3ABGk27dg9sk7X7Sltn0Q3c393pDQyZhSFtjKiODDz2cT8L2sl2LsMUi7jBEGy6Ue9RLio3MnqbpdrYChGFijT3M7qsgHVlKE9UMEewZ9feRHqJ2X/vHx255cqt2SqPDkgh+SY+OSCVMgNqZIaYeSBPJEX8uoo59l5c96npTln1rNP/sj5+AG3+pF+</latexit>

✓
<latexit sha1_base64="6oKeDi3QZAKqlMUfwM01L4ZFEqE=">AAAB63icbZDLSgMxFIbPeK310qpLN8EiuiozIurCRcGNK6lgL9AOJZNm2tAkMyQZoQx9BTcuFHHrE/gm7nwAt30GM20X2vpD4OP/zyHnnCDmTBvX/XKWlldW19ZzG/nNre2dQnF3r66jRBFaIxGPVDPAmnImac0ww2kzVhSLgNNGMLjO8sYDVZpF8t4MY+oL3JMsZASbzGrHmnWKJbfsToQWwZtBqXI8HheuPr6rneJnuxuRRFBpCMdatzw3Nn6KlWGE01G+nWgaYzLAPdqyKLGg2k8ns47QkXW6KIyUfdKgifu7I8VC66EIbKXApq/ns8z8L2slJrz0UybjxFBJph+FCUcmQtniqMsUJYYPLWCimJ0VkT5WmBh7nrw9gje/8iLUT8veefnszitVbmGqHBzAIZyABxdQgRuoQg0I9OERnuHFEc6T8+q8TUuXnFnPPvyR8/4DvSKSgg==</latexit>

Adversarial
Training

Robustness
Testing

protagonist adversary

 is the trajectories sampled using policy and

 is the return of the protagonist

<latexit sha1_base64="cNUIe9+bBg0jo/g9Wpml9ad0ZGs=">AAAB63icbZBNS8NAEIYn9avWr6pHL8EieCqJinqz4MWTVLAf0Iay2W7apbubsDsRSulf8OJBEa/+IT35b9ykPWj1hYWH951hZyZMBDfoeV9OYWl5ZXWtuF7a2Nza3inv7jVNnGrKGjQWsW6HxDDBFWsgR8HaiWZEhoK1wtF1lrcemDY8Vvc4TlggyUDxiFOCmdVFkvbKFa/q5XL/gj+HytXnaa56r/zR7cc0lUwhFcSYju8lGEyIRk4Fm5a6qWEJoSMyYB2Likhmgkk+69Q9sk7fjWJtn0I3d392TIg0ZixDWykJDs1ilpn/ZZ0Uo8tgwlWSIlN09lGUChdjN1vc7XPNKIqxBUI1t7O6dEg0oWjPU7JH8BdX/gvNk6p/Xj278yu1W5ipCAdwCMfgwwXU4Abq0AAKQ3iEZ3hxpPPkvDpvs9KCM+/Zh19y3r8BNTCQng==</latexit>⌧ <latexit sha1_base64="8tCX7MaB7bkWT/w0N7eJzktwFIA=">AAAB7XicbZBNSwMxEIaz9avWr6pHL4tF8FR2VdSbBS+epIL9gHYp2XTaxmaTJZkVytL/4MWDIl79P3ry35hue9DWFwIP7ztDZiaMBTfoed9Obml5ZXUtv17Y2Nza3inu7tWNSjSDGlNC6WZIDQguoYYcBTRjDTQKBTTC4fUkbzyCNlzJexzFEES0L3mPM4rWqrdxAEg7xZJX9jK5i+DPoHT1dZqp2il+truKJRFIZIIa0/K9GIOUauRMwLjQTgzElA1pH1oWJY3ABGk27dg9sk7X7Sltn0Q3c393pDQyZhSFtjKiODDz2cT8L2sl2LsMUi7jBEGy6Ue9RLio3MnqbpdrYChGFijT3M7qsgHVlKE9UMEewZ9feRHqJ2X/vHx255cqt2SqPDkgh+SY+OSCVMgNqZIaYeSBPJEX8uoo59l5c96npTln1rNP/sj5+AG3+pF+</latexit>

✓
<latexit sha1_base64="6oKeDi3QZAKqlMUfwM01L4ZFEqE=">AAAB63icbZDLSgMxFIbPeK310qpLN8EiuiozIurCRcGNK6lgL9AOJZNm2tAkMyQZoQx9BTcuFHHrE/gm7nwAt30GM20X2vpD4OP/zyHnnCDmTBvX/XKWlldW19ZzG/nNre2dQnF3r66jRBFaIxGPVDPAmnImac0ww2kzVhSLgNNGMLjO8sYDVZpF8t4MY+oL3JMsZASbzGrHmnWKJbfsToQWwZtBqXI8HheuPr6rneJnuxuRRFBpCMdatzw3Nn6KlWGE01G+nWgaYzLAPdqyKLGg2k8ns47QkXW6KIyUfdKgifu7I8VC66EIbKXApq/ns8z8L2slJrz0UybjxFBJph+FCUcmQtniqMsUJYYPLWCimJ0VkT5WmBh7nrw9gje/8iLUT8veefnszitVbmGqHBzAIZyABxdQgRuoQg0I9OERnuHFEc6T8+q8TUuXnFnPPvyR8/4DvSKSgg==</latexit>

<latexit sha1_base64="i3oi9JHcCqJNDcoNRMJmby+yGf4=">AAAB7nicbZBNS8NAEIYnftb6VfXoJViEegmJiHosePEkVewHtKFstpt26WYTdidCCf0RXgQr4tXf481/46btQVtfWHh43xl2ZoJEcI2u+22trK6tb2wWtorbO7t7+6WDw4aOU0VZncYiVq2AaCa4ZHXkKFgrUYxEgWDNYHiT580npjSP5SOOEuZHpC95yClBYzUfKh0k6Vm3VHYddyp7Gbw5lKvOa65JrVv66vRimkZMIhVE67bnJuhnRCGngo2LnVSzhNAh6bO2QUkipv1sOu7YPjVOzw5jZZ5Ee+r+7shIpPUoCkxlRHCgF7Pc/C9rpxhe+xmXSYpM0tlHYSpsjO18d7vHFaMoRgYIVdzMatMBUYSiuVDRHMFbXHkZGueOd+lc3Hvl6h3MVIBjOIEKeHAFVbiFGtSBwhCeYQJvVmK9WO/Wx6x0xZr3HMEfWZ8/97+TIA==</latexit>

R(⌧)
[1] Pinto et al., 2017

Ding Zhao | CMU

Limitations of existing RARL Methods

27

①
[Dennis et al., 2020]

Unstable training

②Existing works: Zero-sum

Encourages the adversary to
generate extremely difficult,

even unsolvable environments

The protagonist may learn an
overly conservative strategy or

even not be able to learn

Liu, Z., Cen, Z., Isenbaev, V., Liu, W., Wu, Z.S., Li, B., & Zhao, D. (2022). Constrained Variational Policy Optimization for
Safe Reinforcement Learning. ArXiv, abs/2201.11927.

Ding Zhao | CMU

Limitations of existing RARL methods

28

①
[Dennis et al., 2020]

Unstable training

②Existing work:

gradient-descent-ascent

Each agent naively takes
partial derivative of its

objective w.r.t its parameters

Unstable Training

Ding Zhao | CMU

Robust Reinforcement Learning as a Stackelberg Game via Adaptively-
Regularized Adversarial Training

Unsolvable environments

29

Zero-sum Adversary

Existing Work

Gradient-Descent-
Ascent

①

②
Unstable training

Regularized
Adversary

Our Method

Stackelberg Game

Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training.
arXiv preprint arXiv:2202.09514. 2022

Ding Zhao | CMU

Encourage Challenging but Solvable Environments
• No-Adv: the protagonist is not aware of the danger

• RARL: the adversary generates unsolvable environments

• RRL-Stack: the adversary generates challenging but solvable environments

30

RARLNo-Adv RRL-Stack

 : Protagonist : Adversary

Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training.
arXiv preprint arXiv:2202.09514. 2022

Ding Zhao | CMU

Improve Training Stability and Robustness
• No-Adv: is stable; not robust

• RARL: diverges at around 20 iterations; not robust

• RRL-Stack: keeps learning robust policies; robust

31

No-Adv RARL RRL-Stack

Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training.
arXiv preprint arXiv:2202.09514. 2022

How to deal with a changing
environment?

Ding Zhao | CMU

Safe reinforcement learning for non-stationary environments

32
B. Chen et al., "Context-Aware Safe Reinforcement Learning for Non-Stationary Environments," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021

Context-Aware Safe Reinforcement Learning

What if the contexts are very
different?

Ding Zhao | CMU

Worth reading
• Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, Sergey

Levine, Sergay, “How to Train Your Robot with Deep Reinforcement Learning
– Lessons We’ve Learned,” Journal of Robotics Research (IJRR), 2021

• Kirk R, Zhang A, Grefenstette E, Rocktäschel T. A survey of generalisation in
deep reinforcement learning. arXiv preprint arXiv:2111.09794. 2021 Nov 18.

33

