Trustworthy AI Autonomy

M5-1 Trustworthy RL-Generalization

Carnegie
Mellon
University

Ding Zhao

Assistant Professor

Carnegie Mellon University

202 @ Ding Zhao

Safe Al Lab @CMU

Plan for today

* Working on real robots

e Setting of robots, human supervision etc
* Continuous state actions (DDPG/SAC)
 Delay-aware RL

 Non-stationary context-aware Rl

* (Generalization and meta learning

Ding Zhao | CMU

472x472 W e S e

I/)’ ¥ ~%
\ | {
jass 7l ol B B o

Working with real robots

* Experiment design

* Facilitating continuous operation
Round-the-clock operation

Figure 3. Close-up of our robot grasping setup in our setup
(left) and about 1000 visually and physically diverse training
objects (right). Each robot consists of a KUKA LBR IIWA arm
with a two-finger gripper and an over-the-shoulder RGB camera.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, Sergey Levine, Sergay, “How to Train Your Robot with Deep Reinforcement 3
Dmg Zhao ‘ CMU Learning - Lessons We’ve Learned,” Journal of Robotics Research (IJRR), 2021

Working with real robots

* Experiment design

* Facilitating continuous operation
Round-the-clock operation

* Non-stationarity due to environment
changes

e a consistent performance drop of
5% in as little as 800 grasps
executed on a single robot.

Levine, Sergey, et al. "Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection." The International 4
Ding Zhao ‘ CMU Journal of Robotics Research 37.4-5 (2018): 421-436.

Working with real robots

* Experiment design

* Facilitating continuous operation
Round-the-clock operation

* Non-stationarity due to environment
changes

 The human can reset the scene, stop
the robot in unsafe situations, and
simply restart and reset the robot on

fallures.

https://www.youtube.com/watch?v=FmMPHL3TcrE&t=85s 5

Ding Zhao | CMU

https://www.youtube.com/watch?v=FmMPHL3TcrE

Safe Reinforcement Learning via Human Intervention

* Trial without Error a” {Enwmmm@ 1

Figure 1: HIRL scheme. At (1) the hu-
man overseer (or Blocker imitating the

¢ May nOt be SCa|ab|e fOr human) can block/intercept unsafe ac-
. . e ions a and repl hem with safe ac-
real world implementation (1) Human oversser/imtator— (2)/] £o0e & 2 o0 e e e e

negative reward penalty r* for the agent
choosing an unsafe action.

« However, people still do [[AL agont }sr
it e.q. self-driving
companies

- o

ROADRUNNER COYOTE

\ CATASTROPHE /

Figure 2: In Pong (left) it’s a catastrophe if the agent (green paddle) enters the Catastrophe Zone. In
Space Invaders (center), it’s a catastrophe if the agent shoots their defensive barriers (highlighted in
pink box). In Road Runner (right), it’s a catastrophe if Road Runner touches the Coyote.

: Saunders, William, et al. "Trial without error: Towards safe reinforcement learning via human intervention." arXiv preprint arXiv:1707.05173 (2017).
Ding Zhao | CMU

https://www.youtube.com/watch?v=qhUvQiKec2U

 Parameterize the policy

e Gradient ascent

® J(H9 @ﬂ:@) —

>

o0

=07

t”t‘”@

. O* = argmax,J(0, QZ@)

o 6-+1 — Hi + OJVHJ(Q) ‘6’=6’-’ Hi —> 6*

l

o U, ~ ﬂ.@i() ‘St)

Ding Zhao | CMU

Recap: two ways to compute the optimal policy

Parameterize the value function O

 Dynamic programming

OF(s a) = E[r(s,a) + ymax, OF(s, .0,

ey = Qy(sp a,) — E[r(s,, a) + y max

L
L(p,n) = E | 3¢}’

QZE(Sm, ayp)]

|

(%, n*) = argmin,, , L(¢), 7)

» With the“greedy method”, i.e., 7(a,| 5;) = max, Q (s, a)
@ of O then can influence 7.

* ¢i+1 — ¢i — GV¢L(¢) ‘¢=§bi, ¢i — Qb*, T, — ™

Handle continuous action space

» Issue of DQN: With continuous action space, we need to solve a, = arg max , (J(s,, a) every timestep
in Q-learning.
 When there are a finite number of discrete actions, the max poses no problem, because we can just

compute the Q-values for each action separately and directly compare them. (This also immediately
gives us the action which maximizes the Q-value.)

 But when the action space is continuous, we can’t exhaustively evaluate the space, and solving the
optimization problem is highly non-trivial. Using a normal optimization algorithm would make

calculating max_, Q*(s, a) a painfully expensive subroutine. And since it would need to be run every
time the agent wants to take an action in the environment, this is unacceptable.

« DDPG does not have this problem as it directly approximate arg max , Q*(s, a) with py(s). No
optimization is needed.

¢ —
. | ,. ar | T

https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Ding Zhao | CMU

https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Modeling

min 3" Z (@, 7(5))

Recap: DQN-3.0 algorithmg%e?‘@*z"ee e

Sensmg
— Randomize actions and training data = {spa};

1. Take the £-greedy method:
a, = max, Oy (s,, a) with probability 1 — &, otherwise, choose ¢ onment

e

a random action

observe a dataset {(s,,a,,5,,,1;)} and add it to & The only changes DDPG made
1. Use a deterministic policy to calculate

_, 1. Randomly sample a mini batch from &

arg max: d, = pg(s,) = argmax_, Q(s,, a)
2. Calculate Bellman backup for this batch Q function:
vy =1(spa) +ymax, Op(S1>0y1) max Qp (15 Ay 1) = Oy (11> Ho(S))
A1
T 1. Update the Q function
2. 0., =0+V,JO)|,_,
o b ¢—aYy (V,0,0s,a)) Qs a) = y) ! 07 o=
VJ(0) = Vy0O(s, a) = VoOC(s;, py(s,))

3. Update Q function: o y
- Moving average: ¢, = peh. + (1 — p)p, e.g. p = 0.999 |~ sal Vorg(a | s) V0 (s, a) |, ()]

Ding Zhao ‘ CMU Also called low pass filter/Polyak averaging in literature

9

DDPG algorithms

— Randomize actions and training data
1. Take the a(s,) = py(s,)
observe a dataset {(s,,a,, S,,{,1;)} and add it to &

— 1. Randomly sample a mini batch from &

2. Calculate Bellman backup for this batch
Yy = 1(Sp a) + 7Oy (Spp15 Ho(Sy))
— 1. Update the Q function

) — ¢ — aZt (V¢Q¢(St’ at))(Q¢(St9 a,) — y,)
— 2. Update the policy
L 00483, [Vouals)V,Qhiss)],y o]
3. Update Q function and policy

— ¢i+1 — p¢i + (1 —p)o, ‘9i+1 — /0‘91' + (1 — p)o,

Ding Zhao ‘ CMU Also called low pass filter/Polyak averaging in literature

Modeling
min > L(a;, ms,)

Two tricks to enhance performance

1. Increase stability: use a larger delay to
stabilize the learning of Q function

» use @,_, instead of ¢; to compute y,

https://arxiv.org» cs

Continuous control with deep reinforcement learning

by TP Lillicrap - 2015 - Cited by 5390 — This paper has not been found in the
Papers with Code database. If you are one of the registered authors of this
paper, you can link your code on your arxiv user ...

10

DDPG algorithms

— Randomize actions and training data
1. Take the a(s,) = py(s,)
observe a dataset {(s,,a,, S,,{,1;)} and add it to &

— 1. Randomly sample a mini batch from &

2. Calculate Bellman backup for this batch
Yy = 1(Sp a) + 7Oy (Spp15 Ho(Sy))
— 1. Update the Q function

) — ¢ — aZt (V¢Q¢(St’ at))(Q¢(St9 a,) — y,)
— 2. Update the policy
L 00483, [Vouals)V,Qhiss)],y o]
3. Update Q function and policy

— ¢i+1 — P¢i + (1 — ,O)Qb, ‘9i+1 — ,0‘91' + (1 — p)o,

Ding Zhao ‘ CMU Also called low pass filter/Polyak averaging in literature

Modeling
min > L(a;, ms,)

Two tricks to enhance performance

1. Increase stability: use a larger delay to
stabilize the learning of Q function

* use ¢,_, instead of ¢; to compute y,

2. Use add a Gaussian noise to the
deterministic policy to make the data
more I.1.d and covers more scenarios

e a(s,) = puy(s) + N (0,6%)
* Two approaches: TD3 and SAC 11

Improve the DDPG with TD3

* Overestimation problem
 While DDPG can achieve great performance sometimes, it is frequently brittle with respect to
hyperparameters and other kinds of tuning. A common failure mode for DDPG is that the learned Q-
function begins to dramatically overestimate Q-values (spikes), which then leads to the policy

breaking. Twin Delayed DDPG (TD3) is an algorithm that addresses this issue by introducing three
critical tricks:

1. Clipped Double-Q Learning. TD3 learns two Q-functions instead of one (hence “twin”), and uses the
smaller of the two Q-values to form the Bellman error loss functions. Particularly,

2. “Delayed” Policy Updates.: use ¢,_, instead of ¢, to compute y,. Usually k = 1 or 2.
3. Target Policy Smoothing: Use add a Gaussian noise to the deterministic policy
, . Usually add clips to make the action range feasible. Or

normalize it with a, = tanh (,u@(st) + oy(s,) © &)

Ding Zhao | CMU

12

https://arxiv.org » cs

Soft Actor-Critic: Off-Policy Maximum Entropy Deep R...

SAC by T Haarnoja - 2018 - Cited by 1399 — Both of these challenges severely limit
the applicability of such methods to complex, real-world domains. In this paper,
we propose soft actor-critic ...

- Idea 2: Increase the entropy of the policy distribution z(a, | s,) to encourage exploration
« Use a stochastic policy: ,
» Entropy: H(my) = k£, [-log my(a,|s,)]

* Entropy is a quantity which, roughly speaking, says how random a random variable
IS. If a coin Iis weighted so that it almost always comes up heads, it has low entropy;
iIf it’s evenly weighted and has a half chance of either outcome, it has high entropy.

» Reward: r(s,a,) = r(s,a,) + aH(x(a, | s,))

* This has a close connection to exploration-exploitation trade-off: increasing entropy
results in more exploration, which can accelerate learning later on.

 The Bellman Equation becomes
. O%(s,a)=1E, _Zt,Zt y 7, + azt,ZtH y'"'H(z(a,|s))|s, a

* The remaining is similar to TD3.

7 [’"t + 7(Q"(Spy15 App) + O‘H(”(at’))]

Ding Zhao | CMU 13

SAC algorithms

— Randomize actions and training data
1. Take the a, = tanh (uy(s,) + oy(s) @ &), & ~ A (0,])

— 1. Randomly sample a mini batch from &

2. Calculate Bellman backup for this batch

yt — I’(St, Clt) + Y(mini:m Q¢(i)(sz+1a at+1) + (XH(]Z'(Clt ‘ Sz)))a at+1 ~ 71'@(’ ‘Sz)

_. 1. lteratively calculate ¢ from ¢,
L qb(i) < ¢(i) — azt (V¢<i>Q¢<i>(S;a at))(Q¢(i)(Sta a) —y),1= 11,2}
— 2. lteratively calculate @ from 0,
L 0—0+/)V, Zt [((min,_; , Oyas,, me(a, | s,) + aH(x(a, | s;))]

3. Update Q function and policy
— Cbi+1 — p§bz‘ + (1 —p)o, 6’1‘+1 — ,061‘ + (1 — p)b,

Ding Zhao ‘ CMU Also called low pass filter/Polyak averaging in literature

observe a dataset {(s,,a,, S,,(,7;)} and add it to & Environment ‘%\ n

" —

Modeling
min 3" Z(a; 7))

N J

14

Recap: popular RL algorithms

RL Algorithms

(

)

‘

Policy Optimization

Policy Gradient <——

A2C / A3C <«<—

PPO «—

—>

TRPO N

Ding Zhao | CMU

DDPG

TD3

SAC

N

Q-Learning

—>

Model-Free RL

DQN

C51

QR-DQN

HER

Model-Based RL

Wv
L
Wv
{ \
Learn the Model Given the Model

—>» World Models L> AlphaZero

—> I2A

—> MBMF

— MBVE

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

15

Monte Carlo (MC
Algorithm Agent type Policy Policy type St e s Action space State space

Temporal difference (TD)

Tabular Q-learning (= SARSA
Q B Pseudo-deterministic

max) Value-based Off-policy _ TD Discrete only Discrete only
_ (epsilon greedy)
Qlearning lambda
SARSA) Pseudo-deterministic , ,
Value-based On-policy : TD Discrete only Discrete only

SARSA lambda (epsilon greedy)
DQN
N step DON
Double DON
Noisy DON _ Pseudo-deterministic : _ :

e Value-based Off-policy] Discrete only Discrete or continuous
Prioritized Replay DON (epsilon greedy)
Dueling DON
Categorical DON
Distributed DQN (C51)
NAF = continuous DQN Value-based Continuous Continuous
CEM Policy-based On-policy MC
REINFORCE (Vanilla poli

_ (e Policy-based On-policy Stochastic MC

gradient)
Policy gradient softmax Policy-based Stochastic
Natural Policy Gradient Policy-based Stochastic
TRPO Actor-critic On-policy (?) Stochastic Discrete or continuous Discrete or continuous
PPO Actor-critic On-policy (?) Stochastic Discrete or continuous Discrete or continuous
Distributed PPO Actor-critic Continuous Continuous
A2C [A3C Actor-critic On-policy Stochastic TD Discrete or continuous Discrete or continuous
DDPG Actor-critic Off-policy Deterministic Continuous only Discrete or Continuous
TD3 Actor-critic Continuous only Discrete or continuous
D4PG Actor-critic Continuous only Discrete or continuous
SAC Actor-critic Off-policy Continuous only Discrete or continuous
ACER Actor-critic Discrete Discrete or Continuous
ACKTR Actor-critic Discrete or Continuous Discrete or Continuous

https://www.datamachinist.com/reinforcement-learning/part-2-reinforcement-learning-algorithms/

Domain randomization

Sim-to-real: Dactyl was
trained entirely In
simulation and transfers
its knowledge to reality

Ding Zhao | CMU

https://openai.com/blog/learning-dexterity/

17

A Distributed workers collect B We train a control policy using reinforcement learning.
experience on randomized It chooses the next action based on fingertip positions
environments at large scale. and the object pose.

Observed
Robot States Actions

C We train a convolutional neural network to predict the
object pose given three simulated camera images.

Object Pose

Dlng Zhao ‘ CMU https://openai.com/blog/learning-dexterity/

D We combine the pose estimation network
and the control policy to transfer to the real world.

»

{x ?
;A

A . .,'l N,
)
. = Fingertip = NS
44 | ocations |
C\»—-’-/ k»
Sl Actions
& .

Object Pose

FINGER PIVOTING SLIDING FINGER GAITING

Dlng £11a0 | UIVIU https://openai.com/blog/learning-dexterity/

Consecutive Goals Achieved

50

40

30

20

10

® All Randomizations

10
Years of Experience

® No Randomizations

Learning progress with and without randomizations over years of simulated experience.

Ding Zhao | CMU

https://openai.com/blog/learning-dexterity/

100

20

Delay matters in real-world applications

En v1ronment

St (St—|-n y (Lt) mismatch

Re W - : :
arq i i
interpre tﬁ > | Action Actuator’s
| (@ selection response
% \GEJE é X.J Rl

Action

v
———— — — — -

Agent | Total delay time: n
1 Cm n mmm n mmm w mmm n mmm o mmm n mmm n mmm 6 s mmm mmm n mmm n mmm 6 e s mmm o mmm n mmm n w6 8 mmm w5 mmm n w6 s mmm mmm n mmm n mmm 6 o s mmm mmm n mmm n mmm 6 s mmm n mmm n mmm n mmm 6 s mmm n mmm n mmm n mmm 6 s
’_[AgentJ
state reward action _
s A Delays are prevalent in the real world.
5] Environment J¢ E.g., control freq of autonomous vehicles > 10 Hz,

While the hydraulic brake system delay > 0.4 seconds.

Dmg Zhao ‘ CMU Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

21

Control of the delayed system

 Delays may not only degrade the performance of the agent but also induce
instability to the dynamic systems. (Gu & Niculescu, 2003)

* [he control community has proposed several methods to deal with delayed
tasks. The most general approach is the Smith predictor (Astrom et al., 1994):

S A

- g
Step . —»l- P €@ l » Gz [P K

G(2)

Basic idea: feedback control by predicting the future states.

Cons: requires a system model and is sensitive to model errors.

Dmg Zhao ‘ CMU Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

state

action

state

50

\)

1

S

t
t

Delayed Markov Decision

\)

0

\)

1

(a) MDP(E)

5

state

Process (DMDP)

4

7/

7/

\)

LY
/@
/! lz

/!l

1
°

A

/1 /,'
7’ /
7’
action

(b) DMDP(E, 1)

N

action

HAQQ S

7 7
< 7/
P A——
7
g ,,
’ /
>

t
- (c) DMDP(E, n)

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

Experiment #1: the influence of delay

180 -
160 -
140 -

£120-

gloo-/

80 -
60 -

=== SAC (n=0)
= PETS (n=0)
PETS (n=1)
= W-DATS (n=1)
= DATS (n=1)

0

1000 2000 3000 4000 5000 6000

timesteps

(a) Pendulum-v0

500 -

0 -
-500 -
—1000 1
—1500
—2000 1

reward

—2500

SAC (n=0)
PETS (n=0)
PETS (n=1)
W-DATS (n=1)
DATS (n=1)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

timesteps (10°)

200 -

150 -

reward

—-50 1

1400 -

1200 -

reward

600 -

400

100

50 1

=== SAC (n=0)

= PETS (n=0)
/ PETS (n=1)
- = W-DATS (n=1)
—— DATS (n=1)

1000 -

800 -

4000 6000 8000 10000

timesteps

0 2000

(b) CartPole-v1

=== SAC (n=0)
—— PETS (n=0)

PETS (n=1)
= W-DATS (n=1)
- DATS (n=1)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
timesteps (10°)

SAC (n=0): soft actor-critic, SOTA model-
free algorithm

PETS (n=0): The original PETS algorithm
iIn undelayed environment.

PETS (n=1): The original PETS algorithm
In the 1-step delayed environment but
ignoring the action delay.

W-DATS (n=1): PETS algorithm in the
delayed environment that wastefully
learns the whole dynamics of DMDPs.

DATS (n=1): the proposed method
introduced in Algorithm. 2.

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

200 ; — 200 -

Experiment #2:

100 100
model-based vs : . o
3 3
model-free 100 {— o —
DATS (n=2) RTAC (n=2)
_ | = DATS (n=4) —— RTAC (n=4)
41— DATS (n=8) —200- —— RTAC (n=8)
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
timesteps (10°) timesteps
(a) DATS in Pendulum-v0 (b) RTAC in Pendulum-v0
2000 - 2000 1 __ grac n=1)
RTAC (n=2) =
1000 1000 { — RTAC (1=4) =
—— RTALC (n=8)
T 0 - T 0 -
(1) (1"
< <
g —~1000 - g 1000 -
— DATS (n=1)
~2000 DATS (n=2) ~2000
- DATS (n=4)
~3000 { , | 1 DA (=) ~3000 1 | | | | |
0 2 4 6 8 10 0 2 4 6 8 10
. . - 5
e DATS has stable performance imesteps (10°) imesteps (10°)
when the delay step increases. (c) DATS in Walker2d-v1 (d) RTAC in Walker2d-v1
* dRTIAC (:egr_ades significantly as the DATS: the proposed RTAC: model-free method, the updated
elay step increases.
y SIeP model-based method. SAC. (Ramstedt & Pal, 2019)

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).

Robust Adversarial Reinforcement Learning (RARL)

 Main agent: protagonist

» Environment agent: adversary Adversarial
| Training
» Consider env as the adversary
protagomst adversary
Key idea:
* Adversarial training as a two-player zero-sum game
* The protagonist maximizes e,y [R (7)) e N e
I n Robustness
* The adversary minimizes Lo,y 1 (T)] _
Testing
* Use gradient-descent-ascent-based algorithm to ~~

train the protagonist and adversary

T is the trajectories sampled using policy 8 and (0

R(7) is the return of the protagonist

Ding Zhao ‘ CMU [1]Pinto efal., 2017

Limitations of existing RARL Methods
@ EXisting wo

1.00 r

EEncouok'a 4
99

g[eeneroa-

even NS

0.50
0.75 _/

The protagorist may Tearn an
overly conservative strategy or

Ve RS SRS R Learn

: Liu, Z., Cen, Z., Isenbaeyv, V., Liu, W., Wu, Z.S., Li, B., & Zhao, D. (2022). Constrained Variational Policy Optimization for
Dmg Zhao ‘ CMU Safe Reinforcement Learning. ArXiv, abs/2201.11927.

ero-sum

[Dennis et al., 2020]

L4

Limitations of existing RARL methods

Existi@ork

gradlent -descent-ascent

— 56y + p?

Ding Zhao | CMU

D

[Dennis et al., 2020]

Unstable Training
Unstable training

28

Robust Reinforcement Learning as a Stackelberg Game via Adaptively-
Regularized Adversarial Training

Our Method

@ Regularized

Adversary

Existing Work

Zero-sum Adversary

Unsolvable environments

Gradient-Descent- @ Stackelberg Game

Unstable training

Ascent

. Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Reqgularized Adversarial Training.
Ding Zhao | CMU J) 9 g via Adaptively-Regularized Adversarial Training

arXiv preprint arXiv:2202.09514. 2022

29

Encourage Challenging but Solvable Environments

 No-Adv: the protagonist is not aware of the danger
 RARL: the adversary generates unsolvable environments
 RRL-Stack: the adversary generates challenging but solvable environments

I : Protagonist [@1: Adversary

: Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training.
Ding Zhao | CMU oreprint arXiv:2202.09514. 2022

30

Improve Training Stability and Robustness

e No-Adv: Is stable; not robust
 RARL.: diverges at around 20 iterations; not robust

 RRL-Stack: keeps learning robust policies; robust
No-Adv === RARL == RRL-Stack

10

10.0
‘m‘l A k“‘““ 0.5
9 el
T
= =
© © 8.5
G 8 g
O) 8.0
i, ©
@ & 75
- R | Q
L W
7.0
6 6.5
6.0
0 50 100 150 200 250 0 2 4 6 8 10
training iterations Aggressiveness
Din Zh 20 ‘ CMU Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training. 31
g arXiv preprint arXiv:2202.09514. 2022

Safe reinforcement learning for non-stationary environments

Encoder

Context-Aware Safe Reinforcement Learning

Latent vector

[Environment) [Constrained MPC
it action Py ¥ K
n ~ W |
m observation ¢
_ J -
lbuffer
(Contexts a

(S’ a’S’)l

(S', a., s)r—lj

32

D| ng ZhaO ‘ CM U B. Chen et al., "Context-Aware Safe Reinforcement Learning for Non-Stationary Environments," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021

Worth reading

* Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, Sergey
Levine, Sergay, “How to Train Your Robot with Deep Reinforcement Learning
— Lessons We've Learned,” Journal of Robotics Research (IJRR), 2021

 Kirk R, Zhang A, Grefenstette E, Rocktaschel 1. A survey of generalisation in
deep reinforcement learning. arXiv preprint arXiv:2111.09794. 2021 Nov 18.

Ding Zhao | CMU

33

