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Plan for today
• Working on real robots

• Setting of robots, human supervision etc

• Continuous state actions (DDPG/SAC)

• Delay-aware RL

• Non-stationary context-aware Rl

• Generalization and meta learning
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Working with real robots
• Experiment design

• Facilitating continuous operation 

Round-the-clock operation

3Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, Sergey Levine, Sergay, “How to Train Your Robot with Deep Reinforcement 
Learning – Lessons We’ve Learned,” Journal of Robotics Research (IJRR), 2021



Ding Zhao | CMU

Working with real robots
• Experiment design


• Facilitating continuous operation 
Round-the-clock operation


• Non-stationarity due to environment 
changes

4 Levine, Sergey, et al. "Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection." The International 
Journal of Robotics Research 37.4-5 (2018): 421-436.

• a consistent performance drop of 
5% in as little as 800 grasps 
executed on a single robot.
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Working with real robots
• Experiment design


• Facilitating continuous operation 
Round-the-clock operation


• Non-stationarity due to environment 
changes


• The human can reset the scene, stop 
the robot in unsafe situations, and 
simply restart and reset the robot on 
failures.

5https://www.youtube.com/watch?v=FmMPHL3TcrE&t=85s

https://www.youtube.com/watch?v=FmMPHL3TcrE
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Safe Reinforcement Learning via Human Intervention
• Trial without Error


• May not be scalable for 
real world implementation


• However, people still do 
it e.g. self-driving 
companies

6Saunders, William, et al. "Trial without error: Towards safe reinforcement learning via human intervention." arXiv preprint arXiv:1707.05173 (2017).

https://www.youtube.com/watch?v=qhUvQiKec2U
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Recap: two ways to compute the optimal policy
• Parameterize the policy


• Gradient ascent


• 


•  


• , 


• 


• Parameterize the value function 


• Dynamic programming


• 


• 


• , 


• With the“greedy method”, i.e.,  
 of  then can influence .


• , , 

J(θ, 𝒟πθ
) = 𝔼 [∑∞

t=0 γtrt |πθ]
θ* = arg maxθ J(θ, 𝒟πθ

)

θi+1 = θi + α∇θJ(θ) |θ=θi
θi → θ*

at ∼ πθi
( ⋅ |st)

Q

Qπ*
ϕ*(st, at) = 𝔼[r(st, at) + γ maxat+1

Qπ*
ϕ*(st+1, at+1)]

eπ
ϕ = Qπ

ϕ(st, at) − 𝔼[r(st, at) + γ maxat+1
Qπ

ϕ(st+1, at+1)]

L(ϕ, π) = 𝔼 [ 1
2 eπ

ϕ
2] (ϕ*, π*) = arg minϕ,π L(ϕ, π)

π(at |st) = maxa Qϕ(st, a)
ϕ Q π

ϕi+1 = ϕi − α∇ϕL(ϕ) |ϕ=ϕi
ϕi → ϕ* πi → π*

7
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Handle continuous action space
• Issue of DQN: With continuous action space, we need to solve  every timestep 

in Q-learning.

• When there are a finite number of discrete actions, the max poses no problem, because we can just 

compute the Q-values for each action separately and directly compare them. (This also immediately 
gives us the action which maximizes the Q-value.)


• But when the action space is continuous, we can’t exhaustively evaluate the space, and solving the 
optimization problem is highly non-trivial. Using a normal optimization algorithm would make 
calculating  a painfully expensive subroutine. And since it would need to be run every 
time the agent wants to take an action in the environment, this is unacceptable. 


• DDPG does not have this problem as it directly approximate  with . No 
optimization is needed. 

at = arg maxa Q(st, a)

maxa Q*(s, a)

arg maxa Q*(s, a) μθ(s)

8https://spinningup.openai.com/en/latest/algorithms/ddpg.html

https://spinningup.openai.com/en/latest/algorithms/ddpg.html
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Recap: DQN-3.0 algorithm
Randomize actions and training data

1. Take the -greedy method:  

 with probability , otherwise, choose 
a random action 
observe a dataset  and add it to  


1. Randomly sample a mini batch from 


2. Calculate Bellman backup for this batch 



1. Update the Q function 
 

3. Update Q function:  
Moving average: , e.g.  

ε
at = maxa Qϕi

(st, a) 1 − ε

{(st, at, st+1, rt)} 𝒟

𝒟

yt = r(st, at) + γ maxat+1
Qϕi

(st+1, at+1)

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at))(Qϕ(st, at) − yt)

ϕi+1 = ρϕi + (1 − ρ)ϕ ρ = 0.999
9

The only changes DDPG made


1. Use a deterministic policy to calculate 
arg max:  
Q function: 




2. 


 

 

at = μθ(st) = arg maxa Q(st, a)

max
at+1

Qϕi
(st+1, at+1) → Qϕi

(st+1, μθ(s))

θi+1 = θi + ∇θJ(θ) |θ=θi

∇θJ(θ) = ∇θQ(st, at) = ∇θQ(st, μθ(st))
= 𝔼st∼𝒟[∇θ μθ(at |st)∇aQμ(st, a) |a=μθ(st)

]

randomize data: 
experience replay

Also called low pass filter/Polyak averaging in literature
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DDPG algorithms
Randomize actions and training data

1. Take the  

observe a dataset  and add it to  


1. Randomly sample a mini batch from 


2. Calculate Bellman backup for this batch 



1. Update the Q function 



2. Update the policy 



3. Update Q function and policy 
, , 

a(st) = μθ(st)
{(st, at, st+1, ri)} 𝒟

𝒟

yt = r(st, at) + γQϕi
(st+1, μθ(st))

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at))(Qϕ(st, at) − yt)

θ ← θ + β∑t [∇θ μθ(a |st)∇aQμ
ϕ(st, a) |a=μθ(s) ]

ϕi+1 = ρϕi + (1 − ρ)ϕ θi+1 = ρθi + (1 − ρ)θ
10

Two tricks to enhance performance


1. Increase stability: use a larger delay to 
stabilize the learning of Q function


• use  instead of  to compute ϕi−k ϕi yt

Also called low pass filter/Polyak averaging in literature
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DDPG algorithms
Randomize actions and training data

1. Take the  

observe a dataset  and add it to  


1. Randomly sample a mini batch from 


2. Calculate Bellman backup for this batch 



1. Update the Q function 



2. Update the policy 



3. Update Q function and policy 
, , 

a(st) = μθ(st)
{(st, at, st+1, ri)} 𝒟

𝒟

yt = r(st, at) + γQϕi
(st+1, μθ(st))

ϕ ← ϕ − α∑t (∇ϕQϕ(st, at))(Qϕ(st, at) − yt)

θ ← θ + β∑t [∇θ μθ(a |st)∇aQμ
ϕ(st, a) |a=μθ(s) ]

ϕi+1 = ρϕi + (1 − ρ)ϕ θi+1 = ρθi + (1 − ρ)θ
11Also called low pass filter/Polyak averaging in literature

Two tricks to enhance performance


1. Increase stability: use a larger delay to 
stabilize the learning of Q function


• use  instead of  to compute 


2. Use add a Gaussian noise to the 
deterministic policy to make the data 
more i.i.d and covers more scenarios


• 


• Two approaches: TD3 and SAC

ϕi−k ϕi yt

a(st) = μθ(st) + 𝒩(0,σ2)
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Improve the DDPG with TD3
• Overestimation problem


• While DDPG can achieve great performance sometimes, it is frequently brittle with respect to 
hyperparameters and other kinds of tuning. A common failure mode for DDPG is that the learned Q-
function begins to dramatically overestimate Q-values (spikes), which then leads to the policy 
breaking. Twin Delayed DDPG (TD3) is an algorithm that addresses this issue by introducing three 
critical tricks:


1. Clipped Double-Q Learning. TD3 learns two Q-functions instead of one (hence “twin”), and uses the 
smaller of the two Q-values to form the Bellman error loss functions. Particularly, 

. 


2. “Delayed” Policy Updates.: use  instead of  to compute . Usually  or 2.

3. Target Policy Smoothing: Use add a Gaussian noise to the deterministic policy 

, . Usually add clips to make the action range feasible. Or 

normalize it with 

ϕ(i) ← ϕ(i) − α∑t (∇ϕ(i)Qϕ(i)(st, at))(Qϕ(i)(st, at) − yt), i = {1,2} yt = r(st, at) + γ mini Qϕ(i)(st+1, μθ(st))

ϕi−k ϕi yt k = 1

a(st) = μθ(st) + σθ(st) ⊙ ξ ξ ∼ 𝒩(0,I)
at = tanh (μθ(st) + σθ(st) ⊙ ξ)

12
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SAC
• Idea 2: Increase the entropy of the policy distribution  to encourage exploration


• Use a stochastic policy: , .


• Entropy: 

• Entropy is a quantity which, roughly speaking, says how random a random variable 

is. If a coin is weighted so that it almost always comes up heads, it has low entropy; 
if it’s evenly weighted and has a half chance of either outcome, it has high entropy. 


• Reward: 

• This has a close connection to exploration-exploitation trade-off: increasing entropy 

results in more exploration, which can accelerate learning later on.

• The Bellman Equation becomes


• 


• The remaining is similar to TD3.

π(at ∣ st)
at ∼ πθ(at |st) = tanh(μθ(st) + σθ(st) ⊙ ξ) ξ ∼ 𝒩(0,I)

H(πθ) = 𝔼πθ
[−log πθ(at |st)]

r(st, at) ⇒ r(st, at) + αH(π(at ∣ st))

Qπ(st, at) = 𝔼π [∑t′￼≥t γt′￼−trt′￼
+ α∑t′￼≥t+1 γt′￼−tH(π(at′￼

|st′￼
)) |st, at] = 𝔼π [rt + γ(Qπ(st+1, at+1) + αH(π(at′￼

))]

13
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SAC algorithms
Randomize actions and training data

1. Take the  

observe a dataset  and add it to  


1. Randomly sample a mini batch from 


2. Calculate Bellman backup for this batch 



1. Iteratively calculate  from  



2. Iteratively calculate  from  



3. Update Q function and policy 
, , 

at = tanh (μθ(st) + σθ(st) ⊙ ξ), ξ ∼ 𝒩(0,I)
{(st, at, st+1, ri)} 𝒟

𝒟

yt = r(st, at) + γ(mini=1,2 Qϕ(i)(st+1, at+1) + αH(π(at ∣ st))), at+1 ∼ πθ( ⋅ |st)

ϕ ϕi
ϕ(i) ← ϕ(i) − α∑t (∇ϕ(i)Qϕ(i)(st, at))(Qϕ(i)(st, at) − yt), i = {1,2}

θ θi
θ ← θ + β∇θ ∑t [(mini=1,2 Qϕ(i)(st, πθ(at |st)) + αH(π(at ∣ st))]

ϕi+1 = ρϕi + (1 − ρ)ϕ θi+1 = ρθi + (1 − ρ)θ
14Also called low pass filter/Polyak averaging in literature
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Recap: popular RL algorithms

15https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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https://www.datamachinist.com/reinforcement-learning/part-2-reinforcement-learning-algorithms/
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Domain randomization
• Sim-to-real: Dactyl was 

trained entirely in 
simulation and transfers 
its knowledge to reality

17https://openai.com/blog/learning-dexterity/
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Delay matters in real-world applications

21

Action 
selection

Actuator’s 
response

(         ,     ) mismatch

Total delay time: n

Delays are prevalent in the real world.

E.g., control freq of autonomous vehicles > 10 Hz,

While the hydraulic brake system delay > 0.4 seconds.

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).
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Control of the delayed system
• Delays may not only degrade the performance of the agent but also induce 

instability to the dynamic systems. (Gu & Niculescu, 2003)

• The control community has proposed several methods to deal with delayed 

tasks. The most general approach is the Smith predictor (Astrom et al., 1994):


	 Basic idea: feedback control by predicting the future states.

	 Cons: requires a system model and is sensitive to model errors.

22Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).



Delayed Markov Decision Process (DMDP)

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).



Experiment #1: the influence of delay

● SAC (n=0): soft actor-critic, SOTA model-
free algorithm


● PETS (n=0): The original PETS algorithm 
in undelayed environment.


● PETS (n=1): The original PETS algorithm 
in the 1-step delayed environment but 
ignoring the action delay.


● W-DATS (n=1): PETS algorithm in the 
delayed environment that wastefully 
learns the whole dynamics of DMDPs.


● DATS (n=1): the proposed method 
introduced in Algorithm. 2. 

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).



Experiment #2: 
model-based vs 
model-free


DATS: the proposed 
model-based method.

RTAC: model-free method, the updated 
SAC. (Ramstedt & Pal, 2019)

● DATS has stable performance 
when the delay step increases.


● RTAC degrades significantly as the 
delay step increases.

Chen, Baiming, et al. "Delay-aware model-based reinforcement learning for continuous control." arXiv preprint arXiv:2005.05440 (2020).
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Robust Adversarial Reinforcement Learning (RARL)
• Main agent: protagonist


• Environment agent: adversary  

• Consider env as the adversary


Key idea: 

• Adversarial training as a two-player zero-sum game


• The protagonist maximizes  


• The adversary minimizes 


• Use gradient-descent-ascent-based algorithm to 
train the protagonist and adversary

<latexit sha1_base64="lDLU/CM91/GapEbzLuGJDYf7CUY="></latexit>

E⌧⇠✓, [R (⌧)]
<latexit sha1_base64="lDLU/CM91/GapEbzLuGJDYf7CUY="></latexit>

E⌧⇠✓, [R (⌧)]
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Adversarial 
Training

Robustness 
Testing

protagonist adversary 

 is the trajectories sampled using policy  and 

 is the return of the protagonist
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Limitations of existing RARL Methods

27

①
[Dennis et al., 2020]

Unstable training

②Existing works: Zero-sum

Encourages the adversary to 
generate extremely difficult, 

even unsolvable environments

The protagonist may learn an 
overly conservative strategy or 

even not be able to learn

Liu, Z., Cen, Z., Isenbaev, V., Liu, W., Wu, Z.S., Li, B., & Zhao, D. (2022). Constrained Variational Policy Optimization for 
Safe Reinforcement Learning. ArXiv, abs/2201.11927.
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Limitations of existing RARL methods

28

①
[Dennis et al., 2020]

Unstable training

②Existing work: 

gradient-descent-ascent

Each agent naively takes 
partial derivative of its 

objective w.r.t its parameters

Unstable Training
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Robust Reinforcement Learning as a Stackelberg Game via Adaptively-
Regularized Adversarial Training 

Unsolvable environments

29

Zero-sum Adversary

Existing Work

Gradient-Descent-
Ascent

①

②
Unstable training

Regularized 
Adversary

Our Method

Stackelberg Game

Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training. 
arXiv preprint arXiv:2202.09514. 2022
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Encourage Challenging but Solvable Environments
• No-Adv: the protagonist is not aware of the danger

• RARL: the adversary generates unsolvable environments

• RRL-Stack: the adversary generates challenging but solvable environments

30

RARLNo-Adv RRL-Stack

 : Protagonist  : Adversary

Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training. 
arXiv preprint arXiv:2202.09514. 2022
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Improve Training Stability and Robustness
• No-Adv: is stable; not robust

• RARL: diverges at around 20 iterations; not robust

• RRL-Stack: keeps learning robust policies; robust 

31

No-Adv RARL RRL-Stack

Huang P, Xu M, Fang F, Zhao D. Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training. 
arXiv preprint arXiv:2202.09514. 2022

How to deal with a changing 
environment?
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Safe reinforcement learning for non-stationary environments

32
B. Chen et al., "Context-Aware Safe Reinforcement Learning for Non-Stationary Environments," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021

Context-Aware Safe Reinforcement Learning

What if the contexts are very 
different?
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Worth reading
• Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, Sergey 

Levine, Sergay, “How to Train Your Robot with Deep Reinforcement Learning 
– Lessons We’ve Learned,” Journal of Robotics Research (IJRR), 2021


• Kirk R, Zhang A, Grefenstette E, Rocktäschel T. A survey of generalisation in 
deep reinforcement learning. arXiv preprint arXiv:2111.09794. 2021 Nov 18.
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